Dynamics and Friction in Double Walled Carbon Nanotubes

نویسندگان

  • J. SERVANTIE
  • David Andrieux
  • Sébastien Viscardy
  • Eric Gerritsma
  • Nathan Goldman
چکیده

The objective of this PhD thesis was the study of friction in carbon nanotubes by analytical methods and molecular dynamics simulations. The goal of this research was to characterize the properties of friction in nanotubes and from a more general point of view the understanding of the microscopic origin of friction. Indeed, the relative simplicity of the system allows us to interpret more easily the physical phenomenon observed than in larger systems. In order to achieve this goal, non-equilibrium statistical mechanics permitted first to develop models based on Langevin equations describing the dynamics of rotation and translation in double walled nanotubes. The molecular dynamics simulations then permitted to validate these analytical models, and thus to study general properties of friction such as the dependence on area of contact, temperature and the geometry of the nanotubes. The results obtained shows that the friction increases linearly with the sliding velocity or the angular velocity until very high values beyond that non-linearities appear enhancing dissipation. In the linear regime, it is shown that the proportionality factor between the dynamic friction force and the velocity is given by the time integral of the autocorrelation function of the restoring force for the sliding friction and of the torque for the rotational friction. Furthermore, a novel resonant friction phenomenon increasing significantly dissipation was observed for the sliding motion in certain types of nanotubes. The effect arises at sliding velocities corresponding to certain vibrational modes of the nanotubes. When the dynamics is described by the linear friction in velocity, the empirical law stating that friction is proportional to the area of contact is very well verified thanks to the molecular dynamics simulations. On the other hand, friction increases with temperature. VI Abstract The fact that friction increases as well with the area of contact as the temperature can be easily interpreted. Indeed, if the temperature is large enough so that the electronic effects can be negligible, dissipation is only due to the phonons. Indeed, it is the phonons who give the sliding or rotation energy to the other degrees of freedom until thermodynamic equilibrium is achieved. Thus, if the temperature increases, the coupling between the phonons and the rotational or translational motions increases, as well as friction. In the same manner, when the area of contact increases, the number of available phonons to transport energy increases, explaining thus the increase of the friction force.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rotational dynamics and friction in double-walled carbon nanotubes.

We report a study of the rotational dynamics in double-walled nanotubes using molecular dynamics simulations and a simple analytical model that reproduces the observations very well. We show that the dynamic friction is linear in the angular velocity for a wide range of values. The molecular dynamics simulations show that for large enough systems the relaxation time takes a constant value depen...

متن کامل

Atomistic Simulations of Double-Walled Carbon Nanotubes (DWCNTs) as Rotational Bearings

Atomistic simulations of double-walled carbon nanotubes (DWCNTs) as rotational bearings were performed. Molecular mechanics (MM) calculations show that the interlayer energy surface of the bearings is nearly flat. Thermal effects on the bearings were studied with molecular dynamics (MD) simulations at finite temperature. These simulations show that the interlayer corrugation against rotation, a...

متن کامل

Thermal-induced edge barriers and forces in interlayer interaction of concentric carbon nanotubes.

Molecular dynamics simulations reveal that thermal-induced edge barriers and forces can govern the interlayer interaction of double walled carbon nanotubes. As a result, friction in such systems depends on both the area of contact and the length of the contact edges. The latter effect is negligible in macroscopic friction and provides a feasible explanation for the seemingly contradictory laws ...

متن کامل

Molecular Dynamics Investigation of The Elastic Constants and Moduli of Single Walled Carbon Nanotubes

Determination of the mechanical properties of carbon nanotubes is an essential step in their applications from macroscopic composites to nano-electro-mechanical systems. In this paper we report the results of a series of molecular dynamics simulations carried out to predict the elastic constants, i.e. the elements of the stiffness tensor, and the elastic moduli, namely the Young’s and shear mod...

متن کامل

Radius Dependence of Hydrogen Storage Inside Single Walled Carbon Nanotubes in an Array

In this study, we have investigated radius dependence of hydrogen storage within armchair (n,n) single walled carbon nanotubes (SWCNT) in a square arrays. To this aim, we have employed equilibrium molecular dynamics (MD) simulation. Our simulations results reveal that radius of carbon nanotubes are an important and influent factor in hydrogen distribution inside carbon nanotubes and consequentl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009